Article 10414

Title of the article

ELECTRODYNAMIC CALCULATION OF TRANSMISSION COEFFICIENTS FOR TEM- WAVE THROUGH THE MULTILAYER PERIODIC GRAPHENE-DIELECTRIC STRUCTURES AT TERAHERZ FREQUENCY RANGE

Authors

Golovanov Oleg Aleksandrovich, Doctor of physical and mathematical sciences, professor, sub-department of general professional disciplines, Penza branch of the Military Academy of Maintenance Supplies (Penza-5, Russia), golovanovol@mail.ru
Makeeva Galina Stepanovna, Doctor of physical and mathematical sciences, professor, sub-department of radio engineering and radio electronic systems, Penza State University (40 Krasnaya street, Penza, Russia), radiotech@pnzgu.ru
Varenitsa Vitaliy Viktorovich, Director of the department of code audit and certification, Research and production association “Eshelon” (24 Electrozavodskaya street, Moscow, Russia), v.varenitsa@cnpo.ru

Index UDK

535.32

Abstract

Background. The combination of its unique optical and electronic properties, in addition to flexibility, robustness and environmental stability, makes graphene an extremely interesting material for future photonic and optoelectronic devices. The aim of the present work is to theoretically research diffraction and interaction of electromagnetic waves with multilayer periodic micro- and nanostructures of graphene- dielectric at teraherz frequency ranges, using mathematical modeling by solving the Maxwell's equations, complemented by the constitutive law for graphene.
Materials and methods. The mathematical model of diffraction and interaction of electromagnetic waves with multilayer periodic micro- and nanostructures of graphene-dielectric was developed by solving the Maxwell boundary value problem, where the graphene electron surface conductivity is included as a parameter and determined from the Kubo formalism, using a computational algorithm on autonomous blocks with Floquet channels (FABs).
Results. The results of electrodynamic calculation of transmission coefficients for the TEM-wave through multilayer periodic micro- and nanostructures of graphene-dielectric (for the different number of layers N in the graphene-dielectric stack) depending on the frequency were obtained for different values of chemical potential (the external electric field intensity) at the THz range.
Conclusions. It is shown that the multilayer micro- and nanostructures of graphene-dielectric possess band-gap properties and supports a series of bandpass and band-stop regions. As it follows from the results of the electrodynamic calculation, the transmission coefficients in band-stop regions decrease depending on the increasing number of layers N in the periodic graphene-dielectric stack and can be tuned by the external electric field at the terahertz frequency range.

Key words

multilayer, periodic, microstructures grapheme-dielectric, Kubo formulа, transmission coefficient, band-stop region, teraherz frequency range.

Download PDF
References

1. Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A. Science. 2004, vol. 306 (5696), pp. 666–669.
2. Nair R. R., Blake P., Grigorenko A. N., Novoselov K. S., Booth T. J., Stauber T., Peres N. M. R., Geim A. K. Science. 2008, vol. 320, pp. 1308–1308.
3. Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Katsnelson M. I., Grigorieva I. V., Dubonos S. V., Firsov A. A. Nature. 2005, vol. 438, p. 197.
4. Kaipa C. S. R., Yakovlev A. B., Hanson G. W., Padooru Y. R., Medina F., Mesa F. Physical Review B. 2012, vol. 85, p. 245407.
5. Kaipa C. S. R., Yakovlev A. B., Hanson G. W., Padooru Y. R., Medina F., Mesa F. IEEE MTT-S International Microwave Symposium Montréal (17–22 June 2012). Québec, Canada, 2012.
6. Padooru Y. R., Yakovlev A. B., Kaipa C. S. R., Hanson G. W., Medina F. and Mesa F. Phys. Rev. B. 2013, vol. 87, p. 115401.
7. Hanson G. W. J. of Appl. Phys. 2008, vol. 103, p. 064302.
8. Ryzhii V., Satou A. and Otsuji T. J. Appl. Phys. 2007, vol. 101, p. 024509 (1–5).
9. Golovanov O. A. Radiotekhnika i elektronika [Radio engineering and electronics]. 2006, vol. 51, no. 12, pp. 1423–1430.

 

Дата создания: 17.03.2015 15:09
Дата обновления: 26.03.2015 14:46